Optimization of LoRaWAN planning

Christelle Caillouet

In collaboration with Martin Heusse, Franck Rousseau

LPWAN days, Lyon 12/07/2019

Capacity of a LoRaWAN cell

- Analytical computation of the single cell capacity in terms of maximum number of nodes
- Optimization of SF boundaries using Nelder-Mead simplex heuristic algorithm for non linear models
- Study of node density to optimize the SF boundaries

➔ Optimization of LoRaWAN planning with one or several gateways to maximizing the theoretical capacity

Related work

- D. Zorbas, G. Z. Papadopoulos, P. Maillé, N. Montavont, and C. Douligeris, ICT 2018
 - One gateway, all nodes can use all SFs
 - Find proportion of nodes in each SF (only 7 and 8)
- M. Cesana, A. Redondi, and J. Ortin, PIMRC 2018
 - Multiple gateways but each node associated with closest gateway
 - Performance metric DER and delay

Optimization model

- **Goal** : maximize the number of served nodes in LoRaWAN
- Served if :
 - 1. Probability of successfull transmission above threshold β

$$H = \exp\left(-\frac{Nq_j}{Pg(d)}\right) \ge \beta$$

Transmission successfull if the SNR at the receiver is above the min SNR q_j for DRj at SF=12-j Signal power depends on distance, Rayleigh fading, Okumura Hata path loss attenuation

Optimization model

- Goal : maximize the number of served nodes in LoRaWAN
- Served if :
 - 2. Success probability among concurrent transmissions above threshold γ

$$\Pr(i) = e^{\left(-2T_{pkt}^f \lambda N_i\right)} \ge \gamma$$

None of potential interferers Ni transmits within 2 T^f_{pkt} (airtime at SF f) based on un-slotted ALOHA

Capture effect

- Collision may occur between 2 simultaneous frames in same BW using same SF
- But frame with higher received power can be decoded if at least 6dB more
- → Intra-SF interference parameter between nodes i and j in SF f :

$$C_{ij}^{f} = \begin{cases} 1 & \text{if } P_{rx}^{i} - P_{rx}^{j} \leq 6 \\ 0 & \text{otherwise} \end{cases}$$

Multiple gateways : 1 if power difference less than 6dB at all gateways

TABLE I: SINR thresholds for co-SF interference

 2 frames using different SFs can collide if received power significantly different at the gateway

interferer	7	8	9	10	11	12
desired						
7	6	-16	-18	-19	-19	-20
8	-24	6	-20	-22	-22	-22
9	-27	-27	6	-23	-25	-25
10	-30	-30	-30	6	-26	-28
11	-33	-33	-33	-33	6	-29
12	-36	-36	-36	-36	-36	6

C. Goursaud J-M. Gorce, EAI Trans. On IoT, 2015

→Inter-SF interference parameter between nodes i at SF f and j at SF f' :

$$I_{ij}^{ff'} = \begin{cases} 1 & \text{if } P_{rx}^i - P_{rx}^j \leq SINR_{ff'} \\ 0 & \text{otherwise} \end{cases}$$

Multiple gateways : 1 if power difference less than SINR at all gateways

SF allocation problem

- Input
 - Set of deployed nodes I
 - Set of potential interferers Ni for each node i
 - Threshold $\,eta\,$ and $\,\gamma\,$
- Output
 - SF allocation for served nodes maximizing their cardinality

$$\max \sum_{i \in \mathcal{I}} \sum_{f \in \{7,...,12\}} \omega_i y_i^f \qquad (5)$$

$$\sum_{f \in \{7,...,12\}} y_i^f \leq 1 \qquad \forall i \in \mathcal{I} \qquad (6)$$

$$H \geq \beta y_i^f \quad \forall i \in \mathcal{I}, f \in \{7,...,12\} \qquad (7)$$

$$e^{-2\lambda} \sum_{f \in \{7,...,12\}} T_{pkt}^f y_i^f (1 + \sum_{j \neq i} C_{ij}^f y_j^f + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_j^{f'}) \geq \gamma$$

$$\forall i \in \mathcal{I}$$

- Max served nodes based on weight wi
 - One node : at most one SF
 - SNR threshold to allow SF allocation
 - (8) Success proba guaranty

$$\max \sum_{i \in \mathcal{I}} \sum_{f \in \{7,...,12\}} \omega_i y_i^f \qquad (5)$$

$$\sum_{f \in \{7,...,12\}} y_i^f \leq 1 \qquad \forall i \in \mathcal{I} \qquad (6)$$

$$H \geq \beta y_i^f \quad \forall i \in \mathcal{I}, f \in \{7,...,12\} \qquad (7)$$

$$e^{-2\lambda} \sum_{f \in \{7,...,12\}} T_{pkt}^f y_i^f (1 + \sum_{j \neq i} C_{ij}^f y_j^f + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_j^{f'}) \geq \gamma$$

$$\forall i \in \mathcal{I} \qquad (8)$$

- Max served nodes based on weight wi
 - One node : at most one SF
 - SNR threshold to allow SF allocation
 - Success proba guaranty

In case of multiple gateways, we take the maximum H over all gateways for a particular SF (meaning that the node can reach at least 1 gateway using the SF if max $H\geq\beta$)

$$\max \sum_{i \in \mathcal{I}} \sum_{f \in \{7,...,12\}} \omega_i y_i^f \qquad (5)$$

$$\sum_{f \in \{7,...,12\}} y_i^f \leq 1 \qquad \forall i \in \mathcal{I} \qquad (6)$$

$$H \geq \beta y_i^f \quad \forall i \in \mathcal{I}, f \in \{7,...,12\} \qquad (7)$$

$$e^{-2\lambda} \sum_{f \in \{7,...,12\}} T_{pkt}^f y_i^f (1 + \sum_{j \neq i} C_{ij}^f y_j^f) + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_j^{f'}) \geq \gamma$$

$$\forall i \in \mathcal{I}$$

- Max served nodes based on weight wi
 - One node : at most one SF
 - SNR threshold to allow SF allocation
 - Success proba guaranty
 - → But SFs are not known !

(8)

COATI

$$e^{-2\lambda} \sum_{f \in \{7,\dots,12\}} T^{f}_{pkt} y^{f}_{i} (1 + \sum_{j \neq i} C^{f}_{ij} y^{f}_{j} + \sum_{f' \neq f} \sum_{j \neq i} I^{ff'}_{ij} y^{f'}_{j}) \ge \gamma$$
$$\forall i \in \mathcal{I} \qquad (8)$$

Nonlinear program $e^{-2\lambda \sum_{f \in \{7,...,12\}} T^{f}_{pkt} y^{f}_{i} (1 + \sum_{j \neq i} C^{f}_{ij} y^{f}_{j} + \sum_{f' \neq f} \sum_{j \neq i} I^{ff'}_{ij} y^{f'}_{j})} > \gamma$ $\forall i \in \mathcal{I}$ (8) $\sum_{f} T^{f}_{pkt} y^{f}_{i} (1 + \sum_{j \neq i} C^{f}_{ij} y^{f}_{j} + \sum_{f' \neq f} \sum_{j \neq i} I^{ff'}_{ij} y^{f'}_{j}) \le -\frac{\log(\gamma)}{2\lambda}$

$$\sum_{f} T_{pkt}^{f} y_{i}^{f} (1 + \sum_{j \neq i} C_{ij}^{f} y_{j}^{f} + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_{j}^{f'}) \leq -\frac{\log(\gamma)}{2\lambda}$$

. .

$$\sum_{f} T_{pkt}^{f} y_{i}^{f} (1 + \sum_{j \neq i} C_{ij}^{f} y_{j}^{f} + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_{j}^{f'}) \leq -\frac{\log(\gamma)}{2\lambda}$$

• If $y_i^f = 0$: no limit for the node at SF f

$$\sum_{f} T_{pkt}^{f} y_{i}^{f} (1 + \sum_{j \neq i} C_{ij}^{f} y_{j}^{f} + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_{j}^{f'}) \leq -\frac{\log(\gamma)}{2\lambda}$$

• If $y_i^f = 0$: no limit for the node at SF f

• If
$$y_i^f = 1$$
: $T_{pkt}^f (1 + \sum_{j \neq i} C_{ij}^f y_j^f + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_j^{f'}) \le -\frac{\log(\gamma)}{2\lambda}$

should hold

$$\sum_{f} T_{pkt}^{f} y_{i}^{f} (1 + \sum_{j \neq i} C_{ij}^{f} y_{j}^{f} + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_{j}^{f'}) \leq -\frac{\log(\gamma)}{2\lambda}$$

• If $y_i^f = 0$: no limit for the node at SF f

• If
$$y_i^f = 1$$
: $T_{pkt}^f (1 + \sum_{j \neq i} C_{ij}^f y_j^f + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_j^{f'}) \le -\frac{\log(\gamma)}{2\lambda}$ should hold

COATI

....

UNIVERSITÉ

$$T_{pkt}^{f} (1 + \sum_{j \neq i} C_{ij}^{f} y_{j}^{f} + \sum_{f' \neq f} \sum_{j \neq i} I_{ij}^{ff'} y_{j}^{f'})$$

$$\leq -\frac{\log(\gamma)}{2\lambda} + M(1 - y_{i}^{f}), \ \forall i \in \mathcal{I}, f \in \{7, ..., 12\}$$
(9)

CINIS

	BW = 125 KHz			
~ ·	SF f	Time on air T_{pkt}^{f} (ms)	Required SNR q_f (dB)	
Scenario	7	102	-6	
	8	184	-9	
	9	328	-12	
$\sim 10 lm \times 10 lm \sim m \sim n$	10	616	-15	
• TOKM TOKM area	11	1 315	-17.5	
 1, 2, or 4 gateways 	12	2 466	-20	

TABLE II: Numerical values for a $\lambda = 59$ byte packet at

- 50-1000 uniformly deployed nodes
- Ensure H above β = 66%
- Ensure Pr(i) above $\gamma = [50, 70, 85, 95\%]$
- Traffic intensity $\lambda = \frac{1}{747 s}$ maximum at SF12 for 59B frames at their duty cycle limit

COATI

• LP solved by Cplex (time limit 1h for more than 500 nodes)

Results

Fig. 4: Optimal SF allocation for a network of N = 400 and $\gamma = 50\%$.

COATI

CINIS

Multiple gateway gain

Conclusions

- Optimal model for SF allocation maximizing the number of served nodes in LoRaWAN
 - Ensuring SNR conditions and probability of successfull transmission at the receiver
 - Considering potential physical capture at the receiver and imperfect SF orthogonality
- Analysis of the maximum number of served nodes in a single cell
- Quantify the gain of using multiple gateways

On-going work

- Combine probabilities to define actual PDR of each node
- Introduce PDR as the metric for node SF allocation Objective : $\max(\min(PDR))$ where $PDR = H \times Q$ computed for each node and Q is the probability of successfull transmission in isolated case and with physical capture
- Use column generation to help solving larger instances

