

QUEL LPWAN CHOISIR POUR SON OBJET CONNECTÉ ?

@alexis0duque

alexisd@rtone.fr

rtone.fr

HELLO!

I am Alexis Duque

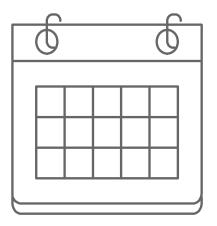
R&D leader at **Rtone**

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON

PhD citi

We Are IoT Makers 11

• <u>·</u>

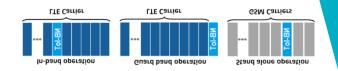


SUMMARY

- Criteria of Choice
- ► LPWANs
- ► Comparison
- Use Cases

- Power Source? Battery capacity?
- Mobility?
- Localization?
- Local? Country? Worldwide?
- Range?
- Throughput? Latency? Message frequency?
- Cost (capex/opex)? Hardware?

- UNB combined with DBPSK(UL) and GFSK(DL)
- Unlicensed ISM bands 868MHz in Europe
- Random Access
- Bandwidth is 100Hz
- ▶ 100**bps**
- Bidirectional but limited
 - ▶ 140 (UL) 4 (DL) mess/day
- 12 bytes (UL) & 8 bytes (DL) PDU
- Range : 10km (urban) 40km (rural)
- Encryption let to the application layer



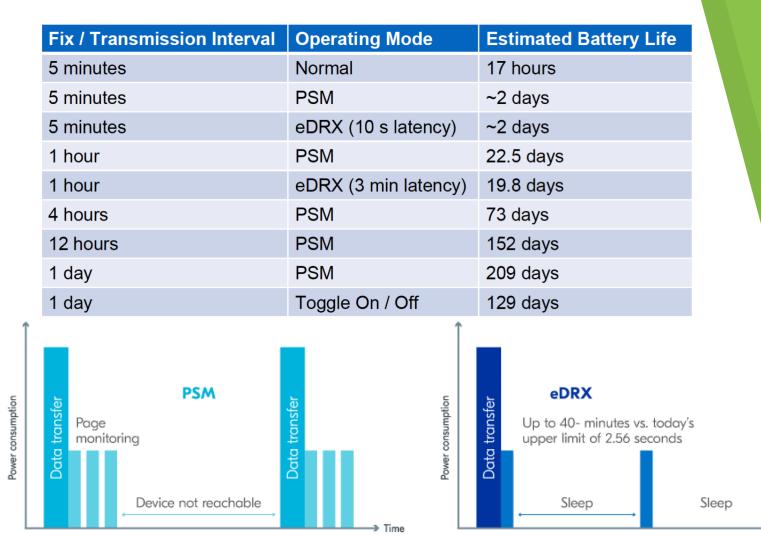
- ► CSS
- Unlicensed ISM bands: 868 MHz in Europe
- Bandwidth : 50 kHz and 125 kHz
- Adaptive data rate: SF7->SF12
- ► 3 class of devices: A, B, C
- 300bps 50kbps Bidirectional
 - 243 bytes PDU
- 5 km (urban), 20 km (rural)
- Allow private network
- Encryption w/ AES

- QPSK + FDMA (UL) / OFDMA (DL)
- LTE Bands 200 kHz bandwidth
- Inband Guardband Standalone
- 60 kbps DL 30 kbps UL w/ CAT-N1 module (R13)
 - X2 w/ Cat-N2 module (R14)
- Half-duplex and unlimited
- ▶ 1600 bytes PDU
- 2s latency
- 1 km (urban), 15km (rural)
- LTE authentication and encryption
- 100K devices per cell

- IMbps(UL & DL) w/ Cat-M1 module (R13)
- 7Mbps(UL) & 4Mbps(DL) w/ Cat-M2 module (R14)
- ▶ 1,4MHz (Cat-M1) or 5MHz (Cat-M2) bandwidth
- Only Inband mode
- Handover support
- Voice
- LTE authentication and encryption
- 200ms latency 300 km/h
- 10km (rural)

		NB-IoT	LoRaWAN	Sigfox	LTE-M
	Nationwide Coverage	Africa: 0, Asia: 0, EU: 0, Americas: 0	Africa: 1, Asia: 1, EU: 3 , Americas: 0	Africa: 0, Asia: 0, EU: 10 , Americas: 0	Africa: 0, Asia: 2 , EU: 0, Americas: 1
	Frequency (Europe)	GSM band / LTE band (licensed) (B3,B8,B20)	868 MHz (unlicensed)	868 MHz (unlicensed)	LTE band (licensed)
	VoLTE / Voice	no	no	no	yes
	Duplex	HDX	HDX	HDX (limited)	HDX
	Bandwidth (kHz)	180	125	192	1080
	Subscription Cost	on request	on request	on request	e.g. 1.7 EUR / month (@200 kb / month)
	Max. # Messages / Day	unlimited	unlimited	140	unlimited
	Roaming	no	no (planned)	yes ⁵	yes
	Module(s)	BC95-B20	SX1272, SX1273, SX1276, SX1277, SX1278, SX1279	ATA8520E	Quectel BG96
xempiary uata ior	Link Budget (dB)		150-168	156	
	Transmission (TX) Power (dBm)	23	20	14	23
	TX Current (max TX Power) (mA)		125 (@20 dBm)	32.7 (@14 dBm)	190 (@23 dBm)
	Max Sensitivity (dBm)	-129	-130 to -148	-121.5	-107
	Supply Current (µA)	PSM: 5 Idle mode: 6000	PSM: 0.1 Idle mode: 1.5	PSM: 0.005 Idle mode: 50	PSM: 10.4 Idle mode: 1990
D	Max Data Rate (DL/UL) (kbps)	24 / 15.625	0.018 to 40	0.6 / 0.1	375 / 375
	Module Costs	14.49 EUR ¹ (@1 unit)	from 5.61 EUR ² (SX1273, @1 unit)	from 2.09 EUR ³ (@1 unit)	33.90 EUR ⁴ (@1 unit)

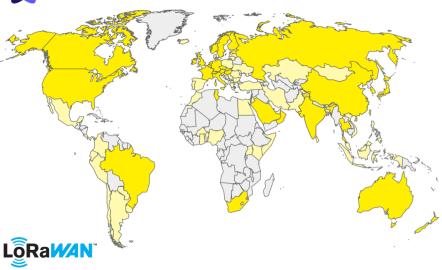
exemplary data for


11

BATTERY LIFE

- Cellular-IoT end device consumes additional power
 - synchronous communication and QoS
 - OFDM/FDMA require more peak current.
 - NB-IoT Battery Life > LTE-M removing LTE features
 - ▶ Both support eDRX & PSM
- Depend on the LoRaWAN device class

IoT devices are **in sleep mode** most of the time outside operation ⇒ **battery life is use case dependant**


13

Time

sigfox

LTE-M & NB-IoT Network National Deployment

GSMA

QUALITY OF SERVICE

- Sigfox and LoRa can bounce interference, multipath, and fading. However, they cannot offer the same QoS provided by Cellular-IoT
- ► QoS vs ¥\$€

NB-IoT is preferred for applications that require guaranteed QoS

Applications that do not have this constraint should choose LoRa or Sigfox.

SCALABILITY - DATA RATE

- Cellular-IoT allows up to 100K concurrent dev./cell
- ▶ NB-IoT 1600B vs LoRa 243B vs Sigfox 12B.
- LoRa more robust against motion vs Sigfox.
 Cellular-IoT is designed for that.

Cellular IoT offers the advantage of very higher scalability than Sigfox and LoRa.

- NB-IoT offers the advantage of low latency.
- LoRa with class C
 - ▶ low-bidirectional latency.
 - expense of increased energy consumption.

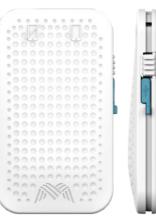
For applications that doesn't requires low latency and low data to send, **Sigfox** and **class-A LoRa** are the best options.

For applications that require **real-time, LTE-M** is required. For **low latency (~s)**, **NB-IoT and class-C LoRa** are the better choices.

- **Sigfox:** YES with **RSSI.**
- LoRaWAN: YES with TDOA
- LTE-M / NB-IoT: YES with Enhanced Cell Identity (ECID) & OTDOA but under standardization, not always deployed

Hardware Module

- ► Sigfox & LoRaWAN < 2\$
- Cellular-IoT ~15\$

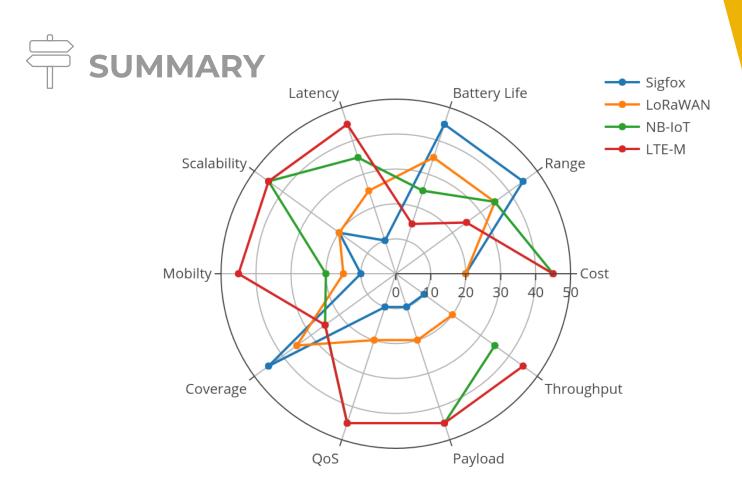

Network Operator

- ► Lora-Sigfox ~0.40\$/month.
- Cellular IoT ~0.60\$/MB/month

Lone Worker Protection System Critical IoT - Payment

Real-time grid monitoring & Industrial IoT

Smart [Building|City]



Asset Tracking

THANKS!

Any questions?

You can reach me at @alexis0duque alexisd@rtone.fr

REFERENCES

- B. E. Benhiba et al. "Comparative Study of The Various new Cellular IoT Technologies" in 2018 International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), 2018.
- A. Ikpehai et al., "Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review" IEEE Internet Things J., vol. 6, no. 2, Apr. 2019.
- W. Ayoubet al., "Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and Supported Mobility" IEEE Commun. Surv. Tutorials, no. April 2016, 2018.
- S. C. Gaddam and M. K. Rai, "A Comparative Study on Various LPWAN and Cellular Communication Technologies for IoT Based Smart **Applications**" in 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), 2018.
- X. Lin et al., "Positioning for the Internet of Things: A 3GPP Perspective" IEEE Commun. Mag., vol. 55, no. 12, 2017.

- O. Iova et al., "LoRa from the City to the Mountains : Exploration of Hardware and Environmental Factors" Int. Conf. Embed. Wirel. Syst. Networks, 2017.
- M. Bor et al. "Do LoRa Low-Power Wide-Area Networks Scale?" 2016.
- F. Adelantado et al., "Understanding the limits of LoRaWAN", 2016.
- https://lora-alliance.org/
- https://www.orange-business.com/fr/reseau-LTE-M
- https://www.sfrbusiness.fr/room/internet-des-objets/
- https://www.gsma.com/iot/mobile-iot/