Autonomie énergétique des capteurs pour réseaux LPWAN Expérimentations LoRa et LTE CAT-M –

Matthieu Gautier, Baptiste Vrigneau, Olivier Berder, Philip-Dylan Gleonec, Malo Mabon, Mickaël Le Gentil

Université de Rennes 1, Laboratoire IRISA, Equipe Granit, Lannion

Journée Low-Power Wide Area Networks (LPWAN), GDR RSD 11 juillet 2019

LPWAN technologies

A large number of LPWAN technologies

	sigfox	LoRa	NB-IOT	LTE-M
Standard	Proprietary	Proprietary	3GPP	3GPP
Modulation	UNB DBPSK(UL) GFSK(DL)	CSS or GFSK	OFDMA	OFDMA
Link Budget	160/149dB	161/157dB	164dB	156dB
Range (Urban)	++	+	++	++
Band	ISM (EU, US) 868/915 MHz	ISM (EU, US) 868/915 MHz	LTE In/Out/Guard	LTE in-band
Channel BW	100/600Hz	125kHz	200KHz	1.4MHz
PWR (UL)	14/20dBm	14/20dBm	20/24dBm	20/24dBm
Module Cost	<10\$	>10\$	~12\$	~15\$ AT&T 5-10\$ Vz: 8-10\$
BS Cost	-	+	++	++
Bitrate	100/600bps (UL)	0.3-50kbps(FSK)	<67kbps	<1Mbps
Battery Life	++	++	++	+

LTE CAT-M vs LoRa ?

 \Rightarrow How to power LPWAN devices ?

Power issues

- Communication is one of the most energy consuming tasks
- Typical battery-powered IoT devices are doomed to die ...
- \ldots and changing the battery is not always feasible !

What about ambient available energy to power LPWAN devices ?

Outline

LPWAN energy consumption LTE CAT-M experiments LoRa experiments

Powering LoRa with energy harvesting Hardware dimensioning Software energy management

Conclusion and perspectives

LTE CAT-M: experimental setup

First experiments on LTE CAT-M1 network provided by Nokia/Orange

LTE-CAT-M setup

- Datarate: 375 kbps
- MQTT protocol: payload of 33 bytes

Experimental setup

- Fipy board from Pycom
 - ESP32 microcontroller
 - Sequans Monarch modem
 - WiFi, Bluetooth, LoRa, Sigfox, LTE CAT-M1 and NB1
- PyTrack extension (GPS)
- LiPo battery (500 mA.h)

LTE CAT-M: experimental results

- Maximal range: 10.8 km
- Impact of the antenna orientation and shadowing

LTE CAT-M: energy consumption

Current consumption of a LTE CAT-M packet transmission

Num.	Label	Durée (s)	Conso. Moy. (mA)
1	Wake-up carte	2,477	44,9
2	Init. Carte	4,481	77,08
3	Attach	4,362	183,6
4	Connect	1,437	170
5	Envoi MQTT	8,615	169,8
6	Delnit LTE	0,141	179,8
7	Prépa. Sleep	6,582	71,14

Average current consumption of 123 mA during 28.1 s

- Energy per packet: 17.3 J for 33 byte payload
- Huge overhead due to MQTT encapsulation

 \Rightarrow Difficult to power using energy harvesting

LoRa: experimental setup

LoRa configuration

- 3 setups:
 - highest bit-rate (SH)
 - LoRa default (SD)
 - lowest bit-rate (SL)
- One device in Class A, one in Class C

Experimental setup

- Amalo board from IRISA laboratory
 - CMWX1ZZABZ-078 chip from Murata
 - STM32L082CZ micro-controller (Cortex M0+)
 - LoRa module (SX1276)
- GPS receiver
- LiPo battery (35mA.h)

	SH	SD	SL
CR	4 5	4 5	<u>4</u> 8
B (kHz)	500	125	125
SF	6	7	12
R _b (kbps)	37.5	5.47	0.183

LoRa: experimental results

Speed has low impact ...

LoRa setup: SD - Speed: 50 km/h

LoRa setup: SD - Speed: 100 km/h

... but the datarate and the shadowing

LoRa setup: SH - Speed: 30 km/h

LoRa: energy consumption

Current consumption of a LoRa packet transmission

Energy per packet (20 byte payload)

- Datarate has a huge impact on energy consumption
- LoRa consumes less than LTE CAT-M1

 \Rightarrow Let's harvest ambient energy

Powering LoRa with energy harvesting

Hardware architecture

- Several energy sources (combined or not)
- Several radio transceiver
- Battery and/or supercapacitor

Software energy management

- Adapt energy consumption of the device
- Prediction algorithms . . . or not !

 \Rightarrow Goal: Maximise QoS while avoiding power failures

From single solar source $\dots (1/2)$

Fine dimensioning of both energy storage device and solar panel area

Experimental validation [mabon19wcmc]

- Amalo board from IRISA laboratory
 - Several harvesters: solar panel, Peltier, piezo ...
 - Energy manager chip (SPV1050 chip)
 - Current monitoring (INA226 chip)

From single solar source $\dots (2/2)$

Node 1:

Node 2:

- Sending period: 5 min
- LoRa setup: SL
- Temperature only
- LiPo battery: 26 mA.h

- Sending period: 1 min

- LoRa setup: SD
- Temperature and humidity
- LiPo battery: 4 mA.h

 \Rightarrow Running since March

... to multiple sources

Multi-source energy harvesting to exploit complementary sources

Experimental validation [gleonec16phd] : two solar panels and a TEG

Energy Managers: QoS adaptation

Related works mainly adapt sending period as QoS for short-range networks

Using predictors

- KAN-PM [kansal07acmtes]: exponentially weighted moving average filter
- WVR-PM [le15ieeesensors]: Wake up Variation Reduction through quantization, more consistency
- GRAPMAN [aitaoudia15pimrc]: Highest QoS for finite horizon

Model-free

- LQ-Tracker [vigorito07secon]: Linear-Quadratic Tracking, technique from adaptive control theory
- P-FREEN [peng14ahn]: Duty-cycle maximization problem as a non-linear programming problem
- PID-based [le13arcs]: Difficult to tune
- Fuzzyman [aitaoudia16icc]: leveraging fuzzy control
- RLman [aitaoudia18ieeegcn]: leveraging reinforcement learning

⇒ Not efficient for LoRaWAN network [gleonec18ict] (convergence time vs duty cycle constraint)

Multi-task energy allocation

Maximize the number of executions of K tasks over a time slot

– Data packet is transmitted only once, at the end of each time slot

A task *i* is defined by

- its priority ρ_i
- its energy consumption E_C^i
- its number of executions ϕ_i between two transmissions

Allocation problem

$$\max_{\phi_i} \left(E_C^{Total} = \sum_{i=1}^K (\phi_i \times E_C^i) \right)$$

s.t. $E_C^{Total} \leq E_B - E_C^{TX}$

Experimental results

Conclusion: towards energy autonomous LPWANs

LPWAN energy consumption

- LTE CAT-M: high data-rate but important protocol overhead
 - \rightarrow high energy consumption
- LoRa configuration improves range but increases energy
 - \rightarrow adaptive data-rate is necessary

Energy harvesting

- Fine dimensioning is necessary to reduce costs
- Energy manager/allocator improves QoS
- LTE CAT-M is still an issue

Perspectives: Combining LoRa and Wake-up radio

ANR Wake-up: Short-long range heterogeneous networks

Wake up radio, ultra low power (always on)
802.15.4 radio, sleeping
802.015.4 radio, active
LoRa radio, active
LoRa radio, active, class C, acting as gateway

- Low latency downlink communications
- Energy efficiency
- Local / distributed processing

References

[mabon19wcmc] M. Mabon et al., "The smaller the better: designing solar energy harvesting sensor nodes for long range monitoring." Wireless Communications and Mobile Computing, 2019. [gleonec16ogc] P.-D. Gleonec et al., "Architecture exploration of multi-source energy harvester for IoT nodes," IEEE Online Conference on Green Communications (Online GreenComm), 2016. [kansal07acmtecs] A. Kansal et al. "Power Management in Energy Harvesting Sensor Networks." ACM Transactions on Embedded Computing Systems, vol. 6, no. 4, 2007. [le15ieeesensors] T.-N. Le at al., "Energy-Efficient Power Manager and MAC Protocol for Multi-Hop Wireless Sensor Networks Powered by Periodic Energy Harvesting Sources." IEEE Sensors Journal, vol. 15, no. 2, 2015. [aitaoudia15pimrc] F. Ait Aoudia at al., "GRAPMAN: Gradual Power Manager for Consistent Throughput of Energy Harvesting Wireless Sensor Nodes." IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015. [vigorito07secon] C. Vigorito et al., "Adaptive control of duty cycling in energy-harvesting wireless sensor networks," IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2007. [peng14ahn] S. Peng et al., "Prediction free energy neutral power management for energy harvesting wireless sensor nodes". Ad Hoc Networks, vol. 13, 2014. [le13arcs] T.-N. Le at al., "Adaptive Filter for Energy Predictor in Energy Harvesting Wireless Sensor Networks," IEEE International Conference on Architecture of Computing Systems (ARCS), 2013. [aitaoudia16icc] F. Ait Aoudia at al., "Fuzzy Power Management for Energy Harvesting Wireless Sensor Nodes." IEEE International Conference on Communications (ICC), 2016. [aitaoudia18ieeegcn] F. Ait Aoudia at al., "RLMan : an Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks," IEEE Transactions on Green Communications and Networking, vol. 2, no. 2, 2018. [gleonec18ict] P.-D. Gleonec et al., "A Real-World Evaluation of Energy Budget Estimation Algorithms for Autonomous Long Range IoT Nodes," International Conference on Telecommunication (ICT), 2018. M. Magno et al., "WULoRa: An Energy Efficient IoT End-Node for Energy Harvesting and [aitaoudia17micpro] Heterogeneous Communication." IEEE/ACM Design. Automation & Test in Europe Conference & Exhibition (DATE), 2016.