

Biography

Ning Baozhu, PhD,

Sr. Design Engineer, Semtech Corporation

Support provided by Ulysse Coutaud

Education:

- Bachelor's degree from Huazhong University of Science & Technology in China, 2008, major in opto-electronics
- Master's degree from the University Paris-Sud, "Normalien" ENS Cachan, 2010, major in automatic and signal processing
- PhD degree from Supelec, 2013, in physical/MAC layer design, iterative receiver

Current working domain:

- System architecture design
- Technology research on LoRa[®] and LoRaWAN[®]

Contact info:

bning@semtech.com

Agenda

- Current state of the LoRa[®] ecosystem
- Experimentation and characterization of the LoRaWAN[®] channel

Agenda

- Current state of the LoRa[®] ecosystem
- Experimentation and characterization of the LoRaWAN[®] channel

Internet of Things (IoT) Connectivity

Devices run on batteries

Require long range connectivity

Network connectivity can be complex

Low Power

Battery life optimized
 10+ years lifetime

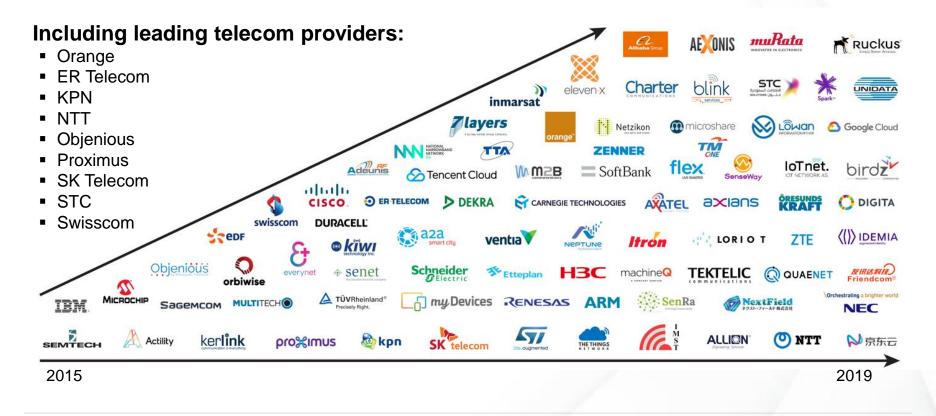
Long Range

 Extensive outdoor coverage
 Deep indoor coverage

Multi Usage

Scalable capacityPublic or privateStar network

LoRa[®] Ecosystem – Complete IoT Solutions


Silicon to Solutions

Source LoRa Alliance®

LoRa Alliance[®] Ecosystem: More than 500 Member Companies

 $\mathbf{\Sigma}$

SEMTECH

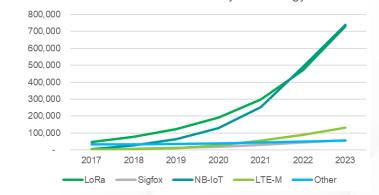
Today's LoRaWAN® Coverage Availability

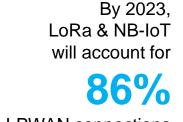
117 Network Operators

74 Alliance Member Operators

56 Countries operating in

141 Countries with LoRaWAN Deployments


All information contained herein is current at time of publishing LoRa Alliance[®] is not responsible for accuracy of information presented



LoRaWAN®: Becoming the De-Facto Standard for LPWAN (IHS Markit)

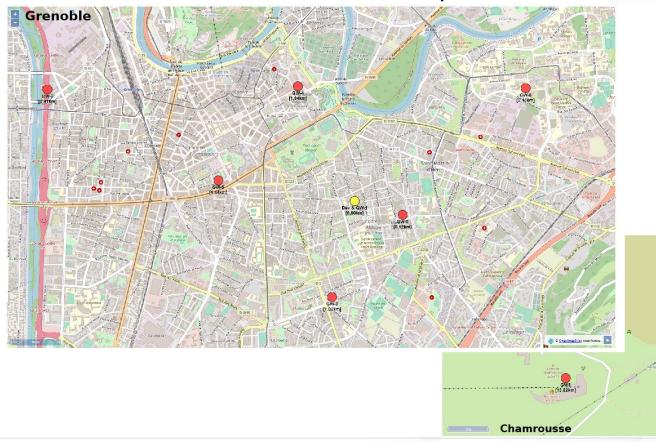
LPWAN Connections By Technology					worldwide 2017-2023		
(thousands of connections)	2017	2018	2019	2020	2021	2022	2023
LoRa	46,388	78,339	123,329	190,755	299,061	470,690	730,686
Sigfox	2,458	6,155	11,928	19,943	30,124	42,925	58,046
NB-IoT	5,428	27,421	64,940	129,581	252,077	491,192	739,802
LTE-M	861	3,858	10,508	25,933	56,041	89,826	132,746
Other	32,402	34,123	36,585	39,897	43,936	49,219	55,704
Grand total	87,537	149,896	247,289	406,109	681,239	1,143,852	1,716,985
Source: IHS Markit							© 2019 IHS Markit

LPWAN connections by technology

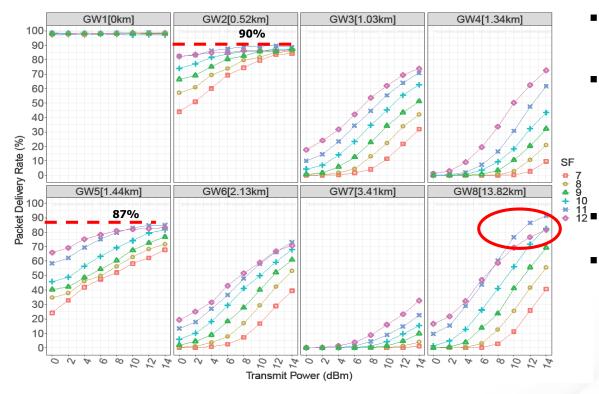
of total LPWAN connections

Agenda

- Current state of the LoRa[®] ecosystem
- Experimentation and characterization of the LoRaWAN[®] channel


Motivation

- Non-synchronized uplink in LoRaWAN[®] network
- One week test in Grenoble (28/05/19 04/06/19)
 - \circ A LoRa®-based end-device transmits with randomized SF, power, and channels
 - $_{\odot}$ Packets received by 8 gateways
 - $_{\odot}$ More than 100K packets in total
- How to get the highest data delivery ratio (DDR)
 - \circ Increasing SF
 - \circ Repetition
 - $_{\odot}$ Forward error coding



Grenoble Test Setup

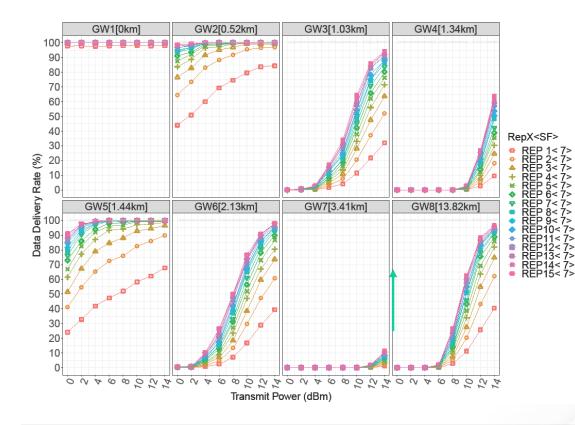
Erasure Floor vs. Spreading Factor: a Biased Fight

Collisions

See SF12 for outdoor gateway (GW8)

Rayleigh Fading Channel

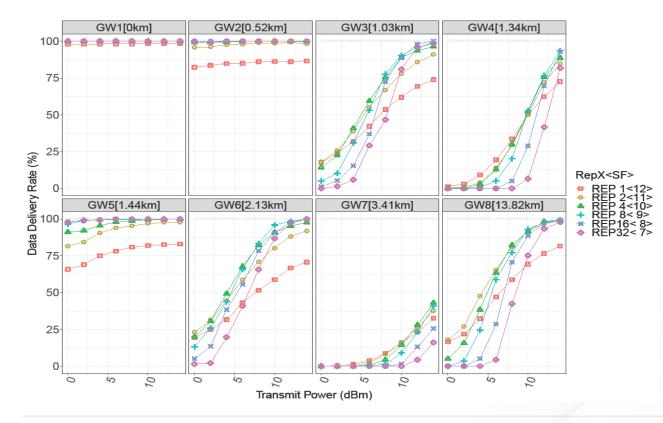
- o Urban environment, multiples frequency channels
- Attia, T., Heusse, M., Tourancheau, B., & Duda, A. (2019, June). Experimental Characterization of Packet Reception Rate in LoRaWAN[®]
- Some transmissions confront highly degraded channel (~10% with -10dB)


10-15% Residual Erasures

Increasing SF

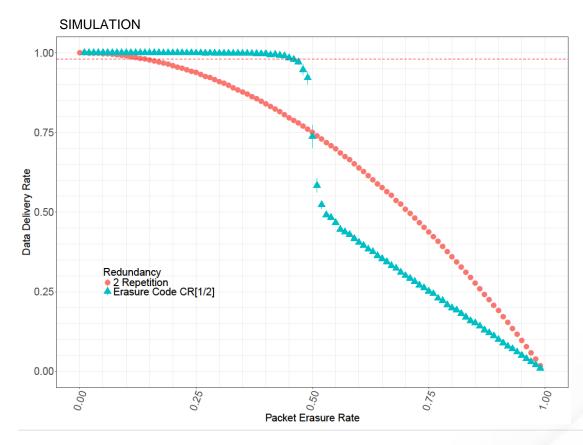
- Expansive (tine on air *2)
- Might be useless
- o Might be harmful

Reliability Through Repetition

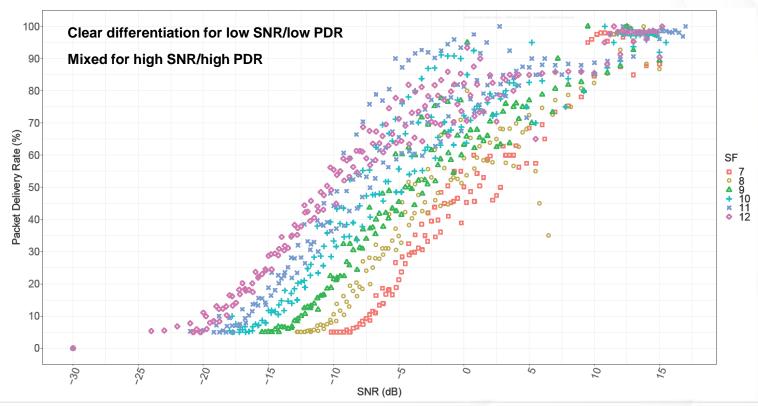

- Enough to pierce PDR ceil
- Important gain for 2 or 3 repetition

Bursty Channel

- Moving and static devices
- Marcelis, P. J., Rao, V. S., & Prasad, R. V. (2017, April). Dare: Data recovery through application layer coding for LoRaWAN. In 2017 IEEE/ACM (IoTDI) IEEE
- Ameloot, T., Van Torre, P., & Rogier, H. (2018).
 A compact low-power lora iot sensor node with extended dynamic range for channel measurements. Sensors, 18(7), 2137.
- Not enough time diversity
- Struggle to reach high reliability
- Expansive


Increase Repetition or Spreading Factor?

- Equivalent Time On Air
- Two Tendencies:
 - Weak signal: High SF and few repetitions
 - Strong signal: Low SF and many repetitions


Reliability Through Forward Error Correction

- Pierce PDR ceil
- Stick to DDR > 99% until waterfall
- Strong against burst erasure (time diversity)
- Weak against high PER

Annex 3 Erasure Floor vs. Spreading Factor: a Biased Fight

Conclusions

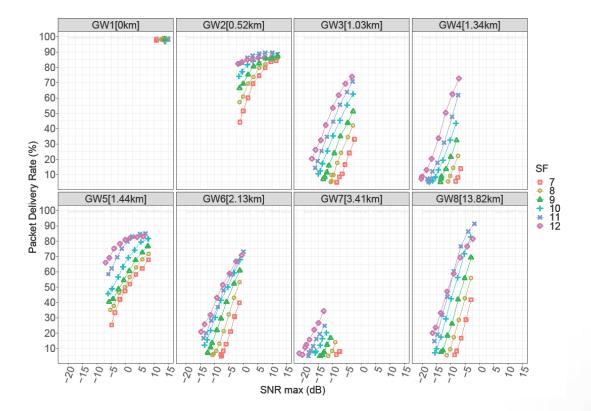
- No Single Solution Fits All Situations
- Agile Adaptation of:
 - $_{\odot}$ Spreading Factor
 - \circ Repetition
 - \circ Forward Error Coding

The ADR Mechanism Can Be Improved:

 Single SF is changed to use a distribution of SFs (example: 25% SF12, 50% SF11, 25% SF10)

Questions

Thank You!


©2019 All Rights Reserved – Property of Semtech Corporation

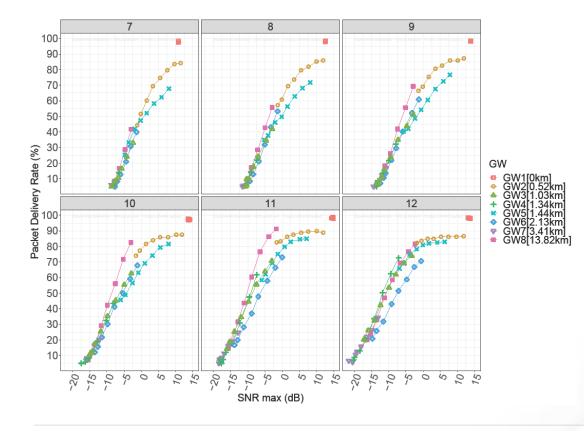
Experimental Setup

- 172,6h (28/05/19:9h20 04/05/19:14h)
- Randomized Spreading Factor (SF): SF7-12
- Randomized Transmit Power (TxP): 0 :2: 14 dBm
- 8 Gateway (GW)
- 384 streams (8GW*6SF*8TxP)
- 4300 frames / stream
- ~ 1 frame / 2,4 minute

Annex 1: Erasure Floor versus Spreading Factor - A Biased Fight

- Collisions
 - $\,\circ\,$ See SF12 for outdoor GW (GW8)

Rayleigh Fading Channel


- o Urban environment, multiples frequency channels
- Attia, T., Heusse, M., Tourancheau, B., & Duda, A. (2019, June). Experimental Characterization of Packet Reception Rate in LoRaWAN[®]
- Some transmissions confront highly degraded channel (~10% with -10dB)

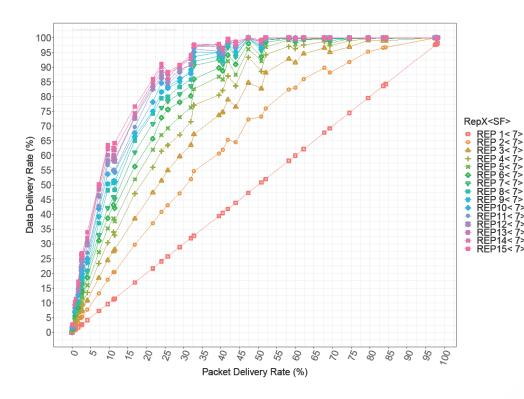
Residual Erasures (10-15% of erasures)

- Increasing SF
 - o Might be useless
 - o Might be harmful
- Frames are lost even with high SNR channel

Annex 2: Erasure Floor versus Spreading Factor - A Biased Fight

Collisions

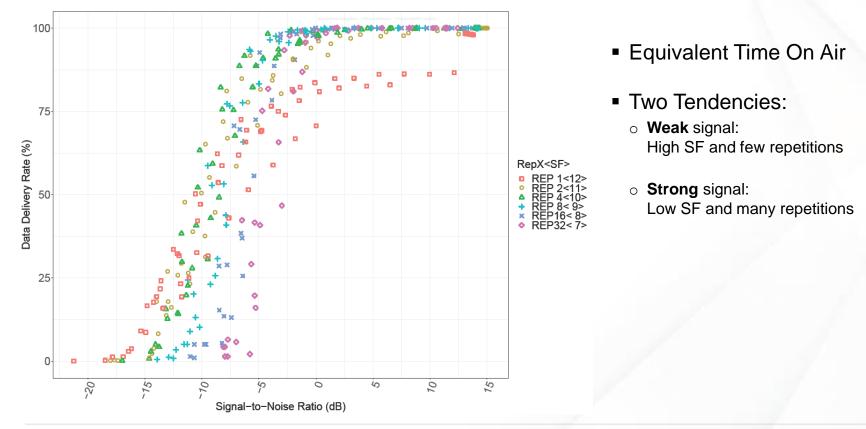
 \circ See SF12 for outdoor GW (GW8)


Rayleigh Fading Channel

- o Urban environment, multiples frequency channels
- Attia, T., Heusse, M., Tourancheau, B., & Duda, A. (2019, June). Experimental Characterization of Packet Reception Rate in LoRaWAN[®]
- Some transmissions confront highly degraded channel (~10% with -10dB)

Residual Erasures (10-15% of erasures)

- Increasing SF
 - o Might be useless
 - o Might be harmful
- Gateways have different behaviors
 - o Different cell size
 - Different network activity
 - o Different hardware


Annex 4: Reliability Through Repetition

- Enough to pierce PDR ceil
- Important gain for 2 or 3 repetition
- Gain decreases beyond 3 repetitions
- Bursty Channel!
 - Moving and static devices
 - Marcelis, P. J., Rao, V. S., & Prasad, R. V. (2017, April). Dare: Data recovery through application layer coding for LoRaWAN. In 2017 IEEE/ACM (IoTDI) IEEE
- Not enough time diversity
- Struggle to reach high reliability
- Expansive

Annex 5: Should I Increase Repetition or Spreading Factor?

